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Abstract

This paper describes a hierarchical strategy to developing the optimal internal structure of a round heat-generating

body cooled at its center with the help of optimally distributed inserts of high-conductivity material. The sequence

begins with optimizing the geometry of the smallest heat generating entity – a sector-shaped elemental volume with the

smallest dimension, and a single high-conductivity insert. Many such elements are assembled into disc-shaped con-

structs, or into sector-shaped constructs in which the elemental volumes are grouped into a formation shaped as a fan.

When several sector-shaped constructs are assembled into a disc, they constitute a quasi-radial heat-flow structure in

which each high-conductivity insert exhibits one branching. Every geometric detail of the optimized two-material

conductive structures is determined based on principle – the minimization of global resistance subject to global con-

straints (total volume, total volume of high-conductivity material). The inserts of high-conductivity material form

structures shape as trees. The global thermal resistance of each tree-shaped construct is reported. The minimization

of global thermal resistance is the criterion for choosing between a design with radial inserts and one with branched

inserts. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Multiple scales, increasing complexity, construction

The world of science and technology is racing toward

smaller scales. The present paper is about a class of re-

search opportunities that can be found in this direction.

These go hand in hand with the interest in phenomena

and devices at smaller scales. To illustrate, we use the

problem of cooling with minimal thermal resistance a

finite volume that generates heat at every point. This is

a fundamental problem in the cooling of electronics

[1–13]. The volume is much larger than the elemental

building blocks – the ‘atoms’ of a structure that must be

determined.

Our objective is to illustrate a generally applicable

hierarchical strategy [1] for the design and optimization

of complex macroscopic systems that employ smaller

and smaller scales. The need for considering the broad

picture – the macro system – is great and universal. No

matter how successful we are in discovering and un-

derstanding small-scale phenomena and processes, we

are forced to face the challenge of assembling these in-

visible elements into palpable devices. The challenge is

to construct, i.e., to assemble and to optimize while as-

sembling. This challenge is becoming more difficult,

because while the smallest scales are becoming smaller,

the complexity of the useful device (always macroscopic)

becomes correspondingly greater.

This observation deserves emphasis, because it is

widely overlooked in discussions of shrinking scales and

nanotechnology. Technology means a lot more than the

new physics that may appear on the frontiers of pro-

gressively smaller scales. A technology is truly new when
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it is made useful in the form of devices (macroscopic

constructs) that improve our lives. Usefulness demands

that we must discover not only new physics, but also the

strategy for packing and connecting the smallest-scale

elements into devices for use at our macroscopic scales.

For example, if the smallest-scale element is the al-

veolus of the human lung, knowing only the biophysics

of the alveolus is not enough. Worse still, the element

alone does not reveal its purpose, or why a flow system

of such a small scale must exist. We must also know how

to assemble into our fixed volume (the thorax) the

largest number of alveoli, and how to connect them (air

ducts, blood vessels) such that the resulting macroscopic

flow structure (the lung) achieves maximum perfor-

mance under the constraints.

For this we need a strategy, or a principle of con-

struction: assembly and optimization at every step, and

at every scale. The physical structure that emerges at the

macroscopic level is the result of following a strategy

(principle) at every step of assembly or complexity in-

crease. Likewise, in the human lung the many trees for

air flow and blood flow are the results of principle: the

relentless pursuit of smaller and smaller flow resistances

when space is at a premium.

Our strategy is to start from the smallest scale, e.g.,

the elemental volume optimized in Section 3. The first

challenge is to understand the functioning of elemental

systems, and to optimize their performance subject to

their own, smallest-scale space constraints. Next is the

challenge to assemble and optimize the relative positions

of a number of elements systems into a larger and fixed

space. The resulting flow system is a first construct [1].

This procedure can be continued toward stepwise larger

scales, in steps of aggregation combined with optimiza-

tion under global constraints.

Just as in the human lung, the structure of the

macroscopic system will be a complex one, with many

tree-shaped paths for the flowing currents, and with ele-

mental systems filling the interstices – the spaces between

the smallest branches of the flow trees. This structure

will be characterized by multiple scales – entire arpeggios

of length, time and force scales. This structure will be

noted for its geometry – numbers of constituents in each

construct relative positions, relative thicknesses of con-

necting ducts, and angles of confluence. All these com-

monly observed features, complexity, multiple scales,

and architecture in three-dimensions, are results of the

consistent reliance on strategy. They are not haphazard.

To think about small-scales technology in these terms

is to make a step forward in the philosophy of engi-

neering design. This step is particularly timely in view of

the computational tools that are available today. Tra-

ditional design begins with assuming one configuration,

building a model (a facsimile of the configuration), and

optimizing its performance. If time and money permit,

one or two alternative configurations are modeled and

optimized, so that in the end the designer may select the

best configuration from the assumed few.

As an alternative, the ‘constructal’ strategy illustrated

in this paper liberates the designer from the straight

jacket represented by modeling (the assumption of a

certain macroscopic structure). Our view is that the

physical configuration is the chief unknown in design,

and that the optimization of configuration (morphol-

Nomenclature

A area (m2)

Ap area of high-conductivity material (m2)

B1;2 dimensionless thermal resistance (Eqs. (14)

and (42))

c factor (Eq. (18))

D thickness (m)
~DD ratio of thicknesses (Eq. (37))

h transversal dimension (m, Fig. 2)

H periphery half-length (Fig. 2)

kp high-thermal conductivity (W/m K)

k0 low-thermal conductivity (W/m K)
~kk ratio of thermal conductivities (kp=k0)
n number of peripheral elements (Fig. 3)

N number of sectors (Fig. 1)

N number of peripheral elements (Fig. 4)

q heat current (W)

q000 volumetric heat generation rate (W=m3)

r radial position (m)

R radius (m)
~RR dimensionless radius (Eq. (28))

Rs thermal resistance (m K/W, Eq. (5))
~RRs dimensionless thermal resistance (Eq. (10))

t thickness (m)

T temperature (K)

Tc corner temperature (K, Fig. 4)

T0 center temperature (K, Fig. 1)

Greek symbols

a, b angles (rad, Fig. 3)

/ volume fraction of high-conductivity

material

Subscripts

max maximum

opt optimum

R peripheral position

s sector

0 central position

1 position near the periphery
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ogy) is the route to maximum global system perfor-

mance. Painfully unknown at the start is the configu-

ration of the complex flow system that will eventually fit

inside the specified (constrained) macroscopic volume.

The illustrated construction and optimization proceed

freely, that is, with architecture as a set of geometrical

variables that can be optimized at each level of assem-

bly. Geometry is not random – it results from principle,

which is why the tree architecture is everywhere, in na-

ture and engineering [1]. Geometry makes systems

achieve their best. Geometry matters.

2. Volume-to-point heat flow

Consider the problem of cooling with one central

heat sink ðT0Þ, a disc-shaped body with uniform distri-

bution of heat generation rate, Fig. 1. In this two-

dimensional geometry the heat generation rates per unit

volume and unit area are, respectively, q000 and q000t,
where t is the thickness of the disc in the direction per-

pendicular to the plane of Fig. 1. The thermal conduc-

tivity of the body is k0. The body temperature is above T0
such that the generated heat current flows into the

center. We seek ways to minimize the global thermal

resistance, i.e., the hot spot temperature Tmax, which is

likely to occur on the rim.

One way to decrease the global resistance is to insert

through the k0 medium an amount of material with

considerably higher thermal conductivity, kp. The com-

position of the two-material composite is fixed, and is

accounted for by the volume fraction

/ ¼ ðvolume of kp materialÞ=ðtotal volumeÞ: ð1Þ

The challenge that comes with designing the composite

is to optimize the geometry of the paths for heat trans-

fer. The question is how to distribute the kp-paths on the

k0 background, how to shape the k0 material that is al-

located to one blade of kp material, and how to connect

kp-blades to each other and to the central heat sink. This

problem was considered for systems shaped as rectangles

[14], where the hierarchical constructal method was

formulated. In this paper we extend the method to the

cooling of a round volume, because disc-shaped assem-

blies are often encountered in the packaging of elec-

tronics [15].

The simplest architectural feature that can be antic-

ipated intuitively is that the thin blades of kp material

(the ‘nerves’ of the heat flow structure) must be arranged

radially and equidistantly with one end touching the

heat sink. In the simplest design, the kp blades do not

have branches and stretch radially all the way to the rim.

As shown in Fig. 1, to each kp blade corresponds a cir-

cular sector with adiabatic radial sides (dashed lines).

More complex constructs with branches form the subject

of Sections 5 and 6.

3. Elemental volume

The most fundamental feature of constructal de-

signs for volume-point and area-point paths is that the

smallest volume (or area) scale of the flow structure is

known and fixed. The smallest scale is invariant, i.e.,

independent of the system into which the more and

more complex flow structure may grow. In applications

such as the cooling of small-scale electronics, the

smallest volume scale is often dictated by manufac-

turing constraints, electromagnetic interference be-

tween neighboring components, and the space

competition between electrical and thermal design

functions.

The elemental volume of the flow structures con-

structed in this work is the sector of circle isolated in

Fig. 2. We assume that there are many radial kp blades

so that one sector is sufficiently slender to be approxi-

mated by an isosceles triangle of base 2H and height R.

The area of the elemental sector is fixed,

As ¼ HR ð2Þ

in accordance with the constraints reviewed in the pre-

ceding paragraph. The dimensions H and R may vary.

The chief unknown of the architecture is the shape of the

sector: the aspect ratio of the element, H=R, or the tip

angle of the circular sector, or the number of elements

(or blades) that should be assembled into a complete

disc (Fig. 1).

The second constraint of the elemental architecture is

the volume fraction of kp material
Fig. 1. Disc-shaped body with uniform heat generation, central

heat sink, and radial pattern of high-conductivity paths.
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/ ¼ DR
HR

¼ D
H
; ð3Þ

where D is the thickness of the kp blade. For the sake of
simplicity in analysis, we assume that

(1) The thickness D is constant,

(2) The kp volume fraction is fixed and small, / � 1,

and

(3) The ratio of thermal conductivities is fixed and

large,

~kk ¼ kp
k0

� 1: ð4Þ

It is shown later in Eq. (11) that assumption (3) is

consistent with the slenderness assumption H=R � 1

when the design of the element is optimized for mini-

mum overall thermal resistance. Assumption (1) is re-

laxed in Section 5. Assumption (2) means that the kp
blade is sufficiently thin to be represented by the axis of

symmetry in Fig. 2 (the TR � T0 line).

The objective in optimizing the geometry of the ele-

mental sector is to minimize the global thermal resis-

tance of the sector,

Rs ¼
Tmax � T0
q000As

; ð5Þ

where q000As is the heat current generated over the

entire sector. We evaluate this in a two-part analysis,

by calculating ðTmax � TRÞ and ðTR � T0Þ. This decou-

pling is possible because under assumptions (2) and

(3) the thermal diffusion through the k0 material is

perpendicular to the kp blade, and the conduction

through the kp material is oriented radially, along the

blade.

In the analysis of vertical k0 conduction along the line

Tmax � TR, we note that there is heat generation at every

point, the Tmax end is insulated, and the TR end (the

contact with the kp blade) is the heat sink. This means

that the temperature distribution is parabolic between

the points TR and Tmax, and has zero slope at Tmax. Be-

cause of the parabolic distribution, the vertical temper-

ature gradient felt at the TR point is 2ðTmax � TRÞ=H . We

account for the conservation of energy in the string-

shaped fiber TR � Tmax by equating the heat current

generated in the fiber ðq0000HÞ with the heat flux leaving

the fiber through the TR end, namely, q000H ¼
k02ðTmax � TRÞ=H . From this we deduce the temperature

difference between the hot spot and the tip of the high-

conductivity blade:

Tmax � TR ¼ q000H 2

2k0
: ð6Þ

In the analysis of conduction along the kp blade, we

note that the heat current that flows toward the center

increases from q ¼ 0 at r ¼ R to the total current

q ¼ q000tA at r ¼ 0. The increase experienced by q at an

intermediate position (r) is

�dq ¼ 2hq000tdr; ð7Þ

where hq000t is the heating collected over the vertical

surface ht, where h ¼ ðH=RÞr. The heat current is pro-

portional to the local temperature gradient:

q ¼ kpDt
dT
dr

: ð8Þ

We determine ðTmax � TRÞ by eliminating q between Eqs.

(7) and (8), integrating twice in r, and invoking the

boundary conditions dT=dr ¼ 0 at r ¼ R, and T ¼ T0 at
r ¼ 0:

TR � T0 ¼
2q000R2

3kp/
: ð9Þ

The global resistance of the elemental sector is ob-

tained by adding Eqs. (6) and (9), and nondimension-

alizing Rs by using the background conductivity k0,

~RRs ¼
Tmax � T0
q000As=k0

¼ 1

2

H
R
þ 2

3~kk/

R
H
: ð10Þ

This expression can be minimized with respect to the

aspect ratio of the element, H=R, and the results are

H
R

� �
opt

¼ 2

ð3~kk/Þ1=2
� 1; ð11Þ

Tmax � T0ð Þmin

q000As=k0
¼ 2

ð3~kk/Þ1=2
: ð12Þ

Eq. (11) shows that the assumed slenderness of the op-

timized sector is consistent with assumption (3): the ratio

of conductivities ~kk must exceed 1=/ in an order of

magnitude sense.

Fig. 2. Elemental system: circular sector with high-conductivity

blade on its center line, and the optimal blade shape.
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4. Disc-shaped assembly or the first construct

The aspect ratio (11) fixes the tip angle of the sector.

It also fixes the number of such sectors that fit in a

complete disc arrangement, N ¼ 2pR=ð2HÞ, namely

N ¼ p
2
ð3~kk/Þ1=2 � 1: ð13Þ

The corresponding thermal resistance of the entire disc is

obtained by using NAs instead of As in Eq. (12)

B1 ¼
Tmax � T0ð Þ
q000NAs=k0

¼ 4

3p~kk/
: ð14Þ

The radius of the disc-shaped construct is

R ¼ ðAs=2Þ1=2ð3~kk/Þ1=4: ð15Þ

The size of the construct (R) is not known a priori. It is

the result of optimization, assembly and the constraints

that govern the smallest-scale element (As;/; ~kk). Aggre-

gation, organization, growth and complexity are the

result of geometric constraints – trying to fit together a

number of smaller optimized parts. A key role is played

by the product ~kk/: larger values mean more high-con-

ductivity blades, more slender blades, and a disc-shaped

construct with larger radius R. We reexamine these

properties in the discussion of Fig. 9.

5. Optimally shaped inserts

Further improvements in the performance of the

construct can be made by relaxing some of the simpli-

fying assumptions, increasing the number of degrees of

freedom of the design, and optimizing the design with

respect to the new degrees of freedom [1]. One example

is the constant-D assumption (1) on which the results of

Section 4 are based. Consider instead the general func-

tion DðrÞ that is subjected to the same volume fraction

constraint,

/ ¼ 1

HR

Z R

0

Ddr: ð16Þ

The choice of kp-blade profile DðrÞ affects the global

resistance through the part TR � T0. This relationship is

obtained by eliminating q between Eqs. (7) and (8), in-

tegrating the resulting equation once in r, invoking

dT=dr ¼ 0 at r ¼ R, and finally integrating from r ¼ 0 to

r ¼ R:

TR � T0 ¼
q000H
kpR

Z R

0

R2 � r2

D
dr: ð17Þ

Variational calculus delivers the function DðrÞ that

minimizes integral (17) subject to constraint (16)

Dopt ¼ cðR2 � r2Þ1=2: ð18Þ

The factor c is calculated by substituting Eq. (18) into

constraint (16)

Dopt ¼
4

p
/H 1

�
� r

R

� �2
�1=2

: ð19Þ

The optimal shape of the high-conductivity blade is such

that the root is thicker and the tip is blunt (dD=dr ¼ �1
at r ¼ R), as shown in the lower part of Fig. 2. These

characteristics match those of other optimized shapes of

elemental inserts, nerves and needles [1]. They also agree

with the features of natural dendrites.

The analytical steps of Section 4 can be repeated with

DoptðrÞ in place of D¼ constant. Eqs. (11)–(15) are re-

placed, in order, by

H
R

� �
opt

¼ p=2

ð2~kk/Þ1=2
; ð20Þ

Tmax � T0ð Þ
q000As=k0

¼ p=2

ð2~kk/Þ1=2
; ð21Þ

N ¼ 2ð2~kk/Þ1=2 � 1; ð22Þ

Tmax � T0ð Þmin

q000NAs=k0
¼ p

8~kk/
; ð23Þ

R ¼ 2As=pð Þ1=2ð2~kk/Þ1=4: ð24Þ

The decrease in the thermal resistance of the sector is

evaluated by dividing Eq. (21) by Eq. (12): the result is

ðp=4Þð3=2Þ1=2 ¼ 0:96, or a 4% decrease. The resistance

decrease registered by the entire disc assembly is esti-

mated by dividing Eq. (23) by Eq. (14): the result

is 3p2=32 ¼ 0:925, which indicates a 7.5 reduction in

global resistance.

6. One level of branching, or the second construct

Natural and engineered flow structures exhibit an

additional feature: they become more complex and more

efficient as they fill larger spaces. In this section we seek

to determine whether this is also true in the case of a

network of high-conductivity blades that cools a disc-

shaped system with uniform heat generation. We begin

with a structure with just one level of complexity above

that of the radial pattern of Fig. 1: one kp blades stret-

ches radially to the distance L0 away from the central

heat sink, and continues with a number (n) of branches

(or, better, tributaries) that reach the rim. In place of the

elemental sector of Fig. 2, we now analyze the sector

with one stem (L0, D0) and n tributaries (L1, D1) shown in

Fig. 3. The goal is to assemble with minimum flow re-

sistance a number (N) of branched sectors into a com-

plete disc, as shown in Fig. 4.

The following analysis is based on the main result of

Section 3: one isolated sector with a single central blade
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has an optimal aspect ratio when its size and amount of

kp material are fixed, and when its global resistance to

heat transfer must be minimized. To use this property, in

Fig. 3 we view the construct as a combination of n small

sectors of aspect ratio H1=L1, plus a central sector of

aspect ratio H0=L0. The length L1 is the distance from the

hot spot ðTmaxÞ to the point of confluence ðTcÞ.
The number of tributaries (n) is an important feature

on which the complexity and manufacturability of the

structure rests. This feature is particularly important in

view of earlier results that show pairing ðn1 ¼ 2Þ as the
best option when the constructs have rectangular shapes

[1,14]. Is pairing or bifurcation always recommended?

We assume that each peripheral sector of radius L1 is

slender enough such that the optimized shape of Eq. (11)

is correct:

H1

L1

¼ 2

ð3~kk/1Þ
1=2

; /1 ¼
D1

H1

; A1 ¼ H1L1: ð25Þ

The same cannot be said about the central sector of

radius L0, because, unlike in Section 3, the Tc end of its

high-conductivity blade is not insulated. For this reason

the aspect ratio of the (H0, L0) sector is free to vary, and

so is the aspect ratio of the entire sector (radius R) of

Fig. 3. For the (H0; L0) sector we write only

H0

L0

ffi a
2
; A0 ¼ H0L0; ð26Þ

where the tip angle a is a function of the assumed n

and R values. The number of A1 elements that fit along

the perimeter of the R disc is N ¼ 2pR=ð2H1Þ. The

number of branched sectors of angle a is N=n. The

angle a is then

a ¼ 2pn
N

¼ 23=2n

Rð3~kk/1Þ
1=4

; ð27Þ

where the dimensionless radius ~RR is based on A1=2
1 as the

specified (fixed) elemental length scale of the structure,

~RR ¼ R

A1=2
1

: ð28Þ

The area A0 that is allocated to the stem (L0;D0Þ is

ða=2ÞL2
0, where L0 ffi R� L1. After some algebra, we

obtain

A0 ffi
21=2n~RRA1

ð3~kk/1Þ
1=4

1

"
� ð3~kk/1Þ

1=4

21=2 ~RR

#2

: ð29Þ

Fig. 3. One level of branching: one central high-conductivity path (L0, D0) with n1 smaller paths (L1, D1) as tributaries.

Fig. 4. Disc-shaped body cooled by a structure consisting of

several of the branched sectors shown in Fig. 3.
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Note that Eq. (29) is approximate because not all

the A1 elements have the length L1. This approxima-

tion becomes more accurate as the angles b and a
decrease.

Next, we estimate the overall thermal resistance

ðTmax � T0Þ=ðq000AÞ. We do this in two parts. For the

overall temperature difference sustained by the corner

sector of radius L1 we deduce from Eq. (12) that

Tmax � Tc ¼
2q000A1

k0ð3~kk/1Þ
1=2

: ð30Þ

The temperature drop from the junction ðTcÞ to the

central link ðT0Þ requires a new analysis, because unlike

Eqs. (7)–(9) the Tc tip of the D0 blade receives the heat

current collected by the n peripheral sectors of size A1,

q000tnA1 ¼ kpD0t
dT
dt

� �
r¼L0

: ð31Þ

As in Fig. 2, the radial position in central sector of Fig. 3

is measured from the center ðr ¼ 0Þ to the Tc junction

ðr ¼ L0Þ. The temperature distribution along the D0

blade is obtained by starting with the equivalent of Eqs.

(7) and (8),

�dq ¼ 2
H0

L0

r
� �

q000tdr; ð32Þ

q ¼ kpD0t
dT
dr

ð33Þ

eliminating q, integrating twice in r, and invoking the tip

condition (31) and T ¼ T0 at r ¼ 0. In the resulting T ðrÞ
expression we set T ðL0Þ ¼ Tc, and obtain

Tc � T0 ¼
q000L0

kpD0

2

3
A0

�
þ nA1

�
: ð34Þ

Adding Eqs. (30) and (34), and noting again that

L0 ffi R� L1, we obtain the temperature difference

Tmax � T0 ffi
2q000A1

k0ð3~kk/1Þ
1=2

þ q000 R� L1ð Þ
kpD0

2

3
A0

�
þ nA1

�
:

ð35Þ

This quantity can be nondimensionalized as

~TT ¼ Tmax � T0
q000A1=k0

¼ 2

3~kk/1

� �1=2
þ

3~kk/1

� �1=4

21=2~kk/1
~DD

~RR

2
64 �

3~kk/1

� �1=4

21=2

3
75

� 23=2n~RR

3 3~kk/1

� �1=4
1

2
64

8>><
>>: �

3~kk/1

� �1=4

21=2 ~RR

3
75

2

þ n

9>>=
>>;; ð36Þ

where ~DD is the ratio of kp-blade thicknesses:

~DD ¼ D0

D1

: ð37Þ

The temperature difference ~TT depends on geometry

(n, ~DD, ~RR), and on the presence of kp material (~kk, /1). The

total amount of kp material in the R disc is represented

by the cross-sectional area

Ap ¼ ND1L1 þ
N
n
D0L0 ð38Þ

or by the fraction that Ap occupies in the entire disc

ðpR2Þ:

/ ¼ Ap

pR2
¼

3~kk/1

� �1=4

/1

21=2 ~RR
þ

~DD/1

n~RR
~RR

2
64 �

3~kk/1

� �1=4

21=2

3
75: ð39Þ

The / fraction is fixed (e.g., / ¼ 0:1), and provides a

relation between ~kk, /1, ~DD, n and ~RR. The ~kk ratio is fixed by

the choice of materials (e.g., ~kk ¼ 300). We expect a

tradeoff between /1 and ~DD, which will represent the

optimal allocation of kp material to the D0 and D1

blades.

To start with, we set n ¼ 2 and ~RR ¼ 4, and minimized
~TT by varying /1 and ~DD, where /1 and ~DD are related by

Eq. (39). Fig. 5 confirms that ~TT has a minimum with

respect to how the kp-material is allocated. The resulting

features of the optimal configuration (/1;opt, ~DDopt, ~TTmin)

are reported in Fig. 6. This figure also shows how the

optimum responds to changes in the size of the con-

struct, ~RR. The optimal allocation of high-conductivity

material is almost insensitive to changes in ~RR. The tem-

perature difference ~TTmin is almost proportional to ~RR.
The numerical work summarized in Fig. 6 was re-

peated for other numbers of elemental branches,

n ¼ 4; 6; . . . The key feature of these results is that the

/1;opt and ~TTmin curves, which in Fig. 6 were plotted for

n ¼ 2, do not shift as n increases. Fig. 7 shows that the
~DDopt curve rises as n increases. A larger ~DDopt means an

elemental insert ðD1Þ that is thinner relative to the stem

(D0). The numerical values plotted in Fig. 7 indicate that
~DDopt=n is almost constant, which means that the opti-

mum is characterized by D0 � nD1. This approximation

is more exact when ~RR is smaller. In this limit, the cross-

sectional area of the kp-inserts is conserved at the junc-

tion between the stem and the branches. When ~RR is

larger, the stem cross-section is larger than the combined

cross-section of the branches, D0 > nD1.

Fig. 6 also shows the required total number of pe-

ripheral elements:

Nopt ¼ 2�1=2p~RRð3~kk/1;optÞ
1=4

: ð40Þ

This number increases as ~RR increases, and is independent

of n. The corresponding central length scale of the op-

timized branched pattern, ~LLopt ¼ L0;opt=A
1=2
1 , is obtained

by writing L0 ¼ R� L1 and using the first of Eq. (25):
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~LLopt ¼ ~RR� 2�1=2ð3~kk/1;optÞ
1=4: ð41Þ

This length increases with ~RR, and is independent of n

(Fig. 6). Note that L0 shrinks to zero (hence /1;opt ¼ /Þ
when ~RR drops to 2.18: this critical ~RR value corresponds to

the optimized radial pattern without branches (Fig. 1),

as we will see again in Fig. 8. The disappearance of the

branched pattern at ~RR ¼ 2:18 is the reason why all the

curves in Fig. 6 vanish below ~RR ¼ 2:18.

7. Growth and complexity: mechanisms for decreasing the

global resistance

In each of the cases optimized in Figs. 5–7 the ele-

mental area A1 and the disc size R were fixed. This means

that the minimization of ~TT is equivalent to the minimi-

zation of the overall thermal resistance of the entire disc,

B2 ¼
Tmax � T0
q000pR2=k0

¼
~TT

p~RR2
: ð42Þ

Because ~TTmin is almost proportional to ~RR, the minimized

resistance ½B2;min ¼ ~TTmin=ðp~RR2Þ� decreases almost as ~RR�1

as ~RR increases. Growth, or system expansion emerges as

a route to the optimization of access for the heat cur-

rents that must be collected on and evacuated from the

disc.

The minimized resistance B2;min depends on ~RR, ~kk and

/. It does not depend on n because ~TTmin does not depend

on n. If we compare this resistance ðB2;minÞ with the

corresponding resistance ðB1Þ of the disc with radial

inserts (Fig. 1), we can determine the recommended

‘transition’ from radial patterns to branched patterns.

We make this comparison based on the same elemental

Fig. 8. The overall thermal resistances of the optimized radial

pattern ðB1Þ and the optimized branched patterns ðB2;minÞ.

Fig. 5. The minimization of the overall temperature difference

in the disc-shaped construct of Fig. 4.

Fig. 6. The effect of the disc size ð~RRÞ on the optimal configu-

ration determined in Fig. 5.

Fig. 7. The effect of the number of elemental branches (n) on

the optimized ratio of the kp-insert thicknesses ð ~DDoptÞ.
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size ðAs ¼ A1Þ and the same amounts and properties of

conducting materials (~kk;/). The dimensionless radius of

the radial design of Section 4 is, cf. Eq. (15),

~RR ¼ 2�1=2ð3~kk/Þ1=4: ð43Þ

In Fig. 1, this radius is fixed when ~kk and / are fixed. In

the branched design ~RR can be increased freely. This is

why in Fig. 8 one case (~kk, /) is represented by one radial-

design point B1ð~RRÞ and one branched-design curve

B2;minð~RRÞ. The figure shows that when ~RR exceeds 2.18 (in

the case / ¼ 0:1, ~kk ¼ 300), the global resistance is

smaller when the high-conductivity material is distrib-

uted according to the optimized branched pattern. Once

again, the global resistance can be decreased by enlarg-

ing the system and making it more complex (with

branching).

We repeated the calculations of Fig. 8 for other values

of ~kk and /, in the range 306 ~kk6 1000 and 0:016/6 0:1.
We found the same qualitative behavior as in Fig. 8, and

the additional feature that the effect of ~kk and / on B2;min is

exercised through the product ~kk/. Fig. 9 is a condensation
of all these results. Lower global resistances are achieved

by decreasing ~kk/, and by switching from the optimized

radial pattern (Fig. 1) to the optimized branched pattern

(Fig. 4) when ~RR can bemade greater than the ~RR value of the

optimized radial pattern. Fig. 8 illustrates this transition

in the case of ~kk ¼ 300 and / ¼ 0:1, for which the radial

pattern has ~RR ¼ 2:18 and 15 elemental sectors, and the

branched pattern has 34 peripheral elements for ~RR ¼ 5

and 64 peripheral elements for ~RR ¼ 10.

8. Concluding remarks

In this paper we illustrated a hierarchical strategy for

developing the optimal flow structure for cooling with

high-conductivity inserts a disc-shaped body that gen-

erates heat at every point. The strategy consists of op-

timization of performance (resistance minimization) at

every scale, followed by the assembly of optimized sys-

tems into larger systems. Every geometric detail of the

heat flow structure is derived from principle. The flow

structure is the construction (configuration) of the two-

material conductive body.

The analytical work was simple enough to allow the

construction to proceed to two levels of assembly, i.e.,

disc-shaped flow structures with one level of branching

(Fig. 4). Beyond this stage, en route to cooling larger

and larger heat-generating bodies, the method calls for

optimizing structures with two levels of branching. This

step would begin with optimizing the architecture of a

sector-shaped construct such as Fig. 3, in which each of

the sectors that make up the ‘fan’ of angle b has the one-

branching structure optimized in this paper based on

Fig. 3. Earlier work on the development of growing tree-

shaped conductive trees in rectangular coordinates [1]

suggests that, when plotted on Fig. 8, the global resis-

tance curve of the two-branching structure would in-

tersect the existing B2;minð~RRÞ curve for one-branching

designs. This means that there is a second transition, at a

higher ~RR value, where the choice of optimized patterns

switches from one-branching designs to two-branching

designs. The first transition, or the ‘onset’ of the first

branching occurred at ~RR ¼ 2:18 for / ¼ 0:1 and ~kk ¼ 300.

There is an analogy between this pattern of successive

transitions and the discrete transitions toward more

complex flows in B�eenard convection and turbulence,

which is why the occurrence of the latter has also be

reasoned on the basis of the construction strategy illus-

trated in this paper [1,16].
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